Back

ⓘ বিশুদ্ধ গণিত




বিশুদ্ধ গণিত
                                     

ⓘ বিশুদ্ধ গণিত

গণিতের যে উপক্ষেত্রে কেবলমাত্র বিমূর্ত ধারণাসমূহ আলোচনা করা হয় তাকে বিশুদ্ধ গণিত বলে। ১৯ শতকেপর থেকে বিশুদ্ধ গণিতকে গণিতের একটি স্বীকৃত উপক্ষেত্র। এটি নৌ ও বিমান পরিভ্রমণ, মহাকাশবিজ্ঞান, পদার্থবিজ্ঞান, পরিবেশবিজ্ঞান, প্রকৌশল এবং অন্যান্য বিষয়ের জন্য ব্যবহৃত গণিত হতে ভিন্ন। বিশদভাবে বলতে গেলে, বিশুদ্ধ গণিত হল, এমন এক ধরনের গণিতশিক্ষা, যাহা সম্পুর্ন গণিতের সারসংক্ষেপ। ইহা ১৯ শতক এর পর থেকে একটি গণিত এর স্বীকার্যকারক অধ্যায়, যা নেভিগেশন, এস্ট্রনমি, পদার্থ, পরিবেশ বিজ্ঞান, ইঞ্জিনিয়ারিং এবং অন্যান্য বিষয়ে ব্যবহৃত গণিত হতে আলাদা।

অন্যদিক থেকে বলা যায়, বিশুদ্ধ গণিত এর ব্যবহার /কাজকর্ম applied mathematics:ফলিত গণিত এর প্রয়োজন নেই। অবাস্তব বস্তু সমূহের উপর পড়াশুনা করা সম্ভব তাদের স্বকীয় অন্তর্নিহিত ব্যবহার এবং তারা প্রকৃতিতে কীভাবে কাজ করছে। এছাড়াও বিশুদ্ধ এবং ফলিত গণিতকে দার্শনিক দিক থেকে বিবেচনা করলে দ্বারায় যে, কার্যকলাপের মাধ্যমে প্রায়শই বিশুদ্ধ ও ফলিত গণিত এর উপরিস্থাপন ও হয়ে থাকে।

বিশ্বের পরিপুর্ণ মডেল তৈরির জন্য অনেক ফলিত গণিতবিদেরা বিশুদ্ধ গণিতের সহায়তা নেয় এবং বিশুদ্ধ গণিতের উপাদান ও কৌশল অবলম্বন করে। অপর পক্ষে অনেক বিশুদ্ধ গণিতবিদ প্রাকৃতিক এবং সামাজিক কাজে ইহা ফলিত গণিতের অংশ তাদের গবেষণার বিশুদ্ধ গণিতের প্রয়োগ করে।

                                     

1. ইতিহাস

প্রাচীন গ্রীস

প্রাচীন গ্রীসের জনগন সর্বপ্রথম বিশুদ্ধ ও ফলিত গণিতের মাঝে পার্থক্য করে থাকে। প্লোটো এরিথমেটিক, এই দুই এর মাঝে পার্থক্য সৃষ্টি কররেছেন।